4 research outputs found

    Physical activity in the androgen receptor knockout mouse: Evidence for reversal of androgen deficiency on cancellous bone

    No full text
    Disruption of the androgen receptor (AR) in male mice reduces cortical bone expansion and muscle mass during puberty and results in high bone turnover-related cancellous osteopenia. We hypothesized that voluntary wheel running during growth is able to rescue the effects of AR disruption on bone. To this end, 5-week-old AR knockout (ARKO) mice were randomized to a running group (cage with running wheel) and a sedentary group (cage without wheel) and followed-up until 16 weeks of age. Voluntary wheel running in ARKO mice did not influence body weight, muscle mass or periosteal bone expansion. Interestingly, Voluntary running significantly reduced bone turnover in ARKO mice and prevented cancellous bone loss due to a preservation of trabecular number. Thus, voluntary running in ARKO mice was able to reduce cancellous bone resorption, suggesting that sustained exercise may potentially compensate the effects of androgen disruption on cancellous bone. (C) 2008 Elsevier Inc. All rights reservedstatus: publishe

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    No full text
    BackgroundSex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk.MethodsWe conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH.ResultsAcross disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p -6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p ConclusionsIn the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels

    Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders

    No full text
    corecore